(3z^(18/5))-(11z^(8/5))-(4z^(-2/5))

Simple and best practice solution for (3z^(18/5))-(11z^(8/5))-(4z^(-2/5)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3z^(18/5))-(11z^(8/5))-(4z^(-2/5)) equation:


D( z )

z = 0

z = 0

z = 0

z in (-oo:0) U (0:+oo)

3*z^(18/5)-(11*z^(8/5))-(4*z^(-2/5)) = 0

3*z^(18/5)-11*z^(8/5)-4*z^(-2/5) = 0

3*z^(18/5)-11*z^(8/5)-4*z^(-2/5) = 0

z^(-2/5)*(3*z^4-11*z^2-4) = 0

3*z^4-11*z^2-4 = 0

{ 1, -1, 2, -2, 4, -4 }

1

z = 1

3*z^4-11*z^2-4 = -12

1

-1

z = -1

3*z^4-11*z^2-4 = -12

-1

2

z = 2

3*z^4-11*z^2-4 = 0

2

z-2

3*z^3+6*z^2+z+2

3*z^4-11*z^2-4

z-2

6*z^3-3*z^4

6*z^3-11*z^2-4

12*z^2-6*z^3

z^2-4

2*z-z^2

2*z-4

4-2*z

0

3*z^3+6*z^2+z+2 = 0

{ 1, -1, 2, -2 }

1

z = 1

3*z^3+6*z^2+z+2 = 12

1

-1

z = -1

3*z^3+6*z^2+z+2 = 4

-1

2

z = 2

3*z^3+6*z^2+z+2 = 52

2

-2

z = -2

3*z^3+6*z^2+z+2 = 0

-2

z+2

3*z^2+1

3*z^3+6*z^2+z+2

z+2

-3*z^3-6*z^2

z+2

-z-2

0

3*z^2+1 = 0

DELTA = 0^2-(1*3*4)

DELTA = -12

DELTA < 0

z in { 2, -2}

1/(z^(2/5)) = 0

1*z^(-2/5) = 0 // : 1

z^(-2/5) = 0

z naleu017Cy do O

z in { 2, -2 }

See similar equations:

| a-2=-9 | | 9-12+6= | | 2v+10=28 | | x/-5=-3 | | -5=x+5 | | a/7=-4 | | -7n=-21 | | b/-4=-5 | | 16+12-20= | | 2y+6=6y-18 | | 6x+8=-3x+-10 | | -3(-x-4)-17=-9(x+0) | | d+7=-4 | | w-9=-16 | | a-9=-6 | | 2*1*1+6*1-5= | | n+3=9 | | -10+b=-1 | | (x-1)/3-(x-1)/2=6 | | w/3=7 | | n+9=16 | | 3+n=1 | | t-4=-6 | | 5=k+1 | | 6+d=17 | | 6x+8=-3+-10 | | 3+t=0 | | k/-7=5 | | 20=n+8 | | -2a=6 | | 10=b+1 | | t-5=-16 |

Equations solver categories